Numerical Hard SOM with Hardclustering
Run Numerical Hard SOM on regular vector collections to learn a SOM model and apply it to predict the input data corresponding HardClustering.
(numerical_hard_som_with_hardclustering_hyperparameters_workflow_to_scala_engine)=
(numerical_hard_som_with_hardclustering_hyperparameters)=
Hyper-parameters
restrictedToColumns: String JSON Array of column names containing numerical features from which learning.maxIterations: Maximum number of SOM iterations.width: SOM grid width.length: SOM grid length.tMin: Minimal temperature from which starts iterations.tMax: Maximal temperature from which ends iterations.initializedModel: It is a String which can takes two kind of values :- The dataLocationId of an existing model if the user want a custom initialization.
- An empty String to use the default initialization.
persistence: String taken in enumeration of Spark memory level available. vector will be made.